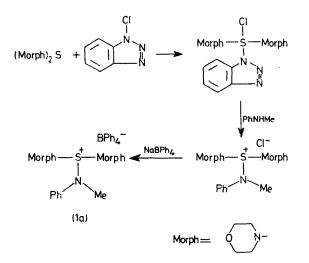
Formation of Triaminosulphonium and Alkoxydiaminosulphonium Ions


By Hiroshi Minato,* Kentaro Okuma, and Michio Kobayashi

(Department of Chemistry, Tokyo Metropolitan University, Setagaya, Tokyo 158, Japan)

Summary Triaminosulphonium and alkoxydiaminosulphonium ions have been prepared; the former are stable towards nucleophiles whereas the latter are readily hydrolysed by the moisture in air.

ALTHOUGH hetero-substituted sulphonium ions are of interest and the disubstituted ions RS+(OMe), and R¹S⁺(NR²₂)₂² have been reported, tri-hetero-substituted sulphonium ions have not yet been reported. We now describe their synthesis.

When a solution of 1-chlorobenzotriazole (1 equiv.) in CH₂Cl₂ was added to a solution of dimorpholino sulphide (1 equiv.) in CH_2Cl_2 at -70 °C, the solution turned pale yellow, indicating the formation of an adduct. Addition of

a solution of N-methylaniline (l equiv.) in CH₂Cl₂ at -70 °C discharged the colour immediately. The solution was then warmed to room temperature and a solution of NaBPh₄ in acetone was added followed by n-hexane; a mixture of NaCl and the triaminosulphonium tetraphenylborate (1a) was precipitated. The salt (1a) was dissolved in acetone, and reprecipitated with n-hexane. The triaminosulphonium salts (1b-e) were prepared similarly.

In the case of (1b), N-chloromorpholine could be used instead of 1-chlorobenzotriazole; simple mixing of R₂N-S-NR₂ and R₂N-Cl yielded (R₂N)₃S+Cl⁻, which was converted into (1b) by NaBPh₄.

¹ H. Minato, K. Yamaguchi, and M. Kobayashi, Chemistry Letters, 1975, 307.

² J. L. Richards and D. S. Tarbell, J. Org. Chem., 1970, 35, 2079.

After reprecipitation from acetone, compounds (1a-e) all gave satisfactory C, H, and N analyses, and their 1H and ¹³C n.m.r. and ir. spectra are consistent with the triaminosulphonium ion structure.

$$R^{1}-S^{+}-R^{2} \quad BPh_{4}^{-}$$

$$|_{R^{3}}$$
(1)
a; $R^{1} = R^{2} = Morph; R^{3} = PhMeN$
b; $R^{1} = R^{2} = R^{3} = Morph$
c; $R^{1} = R^{2} = Rorph; R^{3} = piperidino$
d; $R^{1} = R^{2} = Et_{2}N; R^{3} = piperidino$
e; $R^{1} = R^{2} = R^{3} = piperidino$

a

These triaminosulphonium ions are unique in that they are very stable towards nucleophiles. Even when they were left with Ph₃P in (CD₃)CO for 3 days or when they were refluxed in MeOH for several hours, no change was observed in their n.m.r. spectra. Mixing with Me₂S or Et₂NH also caused no change. The dialkoxysulphonium ions R1S+- $(OR^2)_2$ react instantaneously with Me_2S^{1}

A solution of dimorpholino sulphoxide (0.04 mol) in CH₂Cl₂ and triethyloxonium tetrafluoroborate (0.042 mol) was refluxed for 2 h, and then ether was added. The brown-black oil which was formed was recrystallized from MeOH in the dry. Pale yellow crystals of the salt (2) were obtained (24.6%). Its ¹H and ¹³C n.m.r. spectra were consistent with this structure, but its C, H, and N analyses were somewhat removed from the theoretical values because of its extreme moisture sensitivity. This decomposition is probably catalysed by the HBF₄ formed

$$(Morph)_2SO + EtO^+BF_4^- \rightarrow Morph-S^+-Morph$$

 \downarrow
 $OEt BF_4^-$
(2)

in the hydrolysis. The salt (2) must be synthesized in a well dried solvent in a dry box. Attempts to exchange its anion with BPh₄⁻ resulted in its hydrolysis.